
LLNL-TR-403930

PARALLEL IMPLEMENTATION
OF THE TOPAZ OPACITY
CODE: ISSUES IN
LOAD-BALANCING

V. Sonnad, C. A. Iglesias

May 15, 2008



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



PARALLEL IMPLEMENTATION OF THE TOPAZ OPACITY CODE:
ISSUES IN LOAD-BALANCING

VIJAY SONNAD
CAR-DEPCom

and

CARLOS A. IGLESIAS
PS-High Energy Density Physics (V Division)

ABSTRACT

The TOPAZ opacity code explicitly includes configuration term structure in the calculation 

of bound-bound radiative transitions. This approach involves myriad spectral lines and requires 

the large computational capabilities of parallel processing computers. It is important, however, to 

make use of these resources efficiently. For example, an increase in the number of processors 

should yield a comparable reduction in computational time. This proportional “speedup” 

indicates that very large problems can be addressed with massively parallel computers. Opacity 

codes can readily take advantage of parallel architecture since many intermediate calculations are 

independent. On the other hand, since the different tasks entail significantly disparate 

computational effort, load-balancing issues emerge so that parallel efficiency does not occur 

naturally. Several schemes to distribute the labor among processors are discussed.
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1. INTRODUCTION

The TOPAZ code was developed to calculate the opacities of mid-Z elements. The three 

major contributors to photon absorption are bound-bound, bound-free, and free-free transitions. 

[1] For mid-Z elements, the opacity from the bound-bound process involves contributions from a 

large number of transition arrays. Each array consists of radiative transitions involving pairs of 

initial and final electronic configurations. In turn, each configuration has a number of total 

angular momentum terms resulting from the angular momentum couplings of the individual 

electrons in the configuration. Finally, all possible transitions between each term in the initial 

and final configurations must be considered; hence, the terminology detailed term accounting 

(DTA) method. [2]

The calculations for a transition array start by solving for the eigenvalues and eigenvectors of 

the Hamiltonian corresponding to the initial and final configurations. Then follows a pre and post 

multiplication of the resulting eigenvectors by the transition matrix. [2] The matrix elements are 

made up of radial and angular expressions. After careful evaluation, the ANCO code was chosen 

for the calculation of the angular contribution to the matrix elements. [3,4]

While the angular parts are unique to each configuration term, the radial contributions are 

unchanged for all terms corresponding to a given relativistic configuration. Nevertheless, for 

complex configurations, the overall costs of a transition array calculation are large compared to 

the radial calculations alone, and there is no significant penalty in recalculating the radial 

expressions as required.

The DTA approach can generate myriad transitions so that these are large calculations; thus, 

parallel processing is necessary to keep the computations tractable. The number of terms depends 

on the complexity of the configuration; for example, the number of open shells. [2] This leads to 

wildly disparate computational times for transitions involving different initial-final relativistic 

configuration pairs. Consequently, a naïve parallel implementation can lead to very poor scaling 

due to load imbalance among the tasks. The present work describes the structure of the 

computations for bound-bound transitions and the different approaches that have been developed 

in order to obtain good parallel performance.

2. PARALLEL IMPLEMENTATION

Given the structure for the bound-bound computations, it was decided to employ a manager-

worker approach as the most appropriate for parallel implementation. The basic strategy is 
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simple: of the available processors, one is termed a manager processor with the rest being worker 

processors. The manager processor initially assigns a task to each available worker processor. 

When any worker processor completes its assigned task, the manager collects the individual 

worker-processor results and assigns a new task to that worker. The process is repeated until all 

available tasks are assigned and completed. In the final stage the manager processor uses the 

compiled results to calculate a variety of quantities not requiring much computational effort such 

as the Rosseland mean opacity. [1]

There are several challenges to realizing high parallel processing efficiency with a manager-

worker approach:

i. How are independent tasks to be computed in parallel by the worker processors defined?

ii. Each task must be complex enough so that the communication time between manager and 

worker is small compared to the computation time for that task.

iii. Simultaneously, it is desirable to have many tasks to take advantage of a large number of 

processors.

iv. The tasks should be comparable in computation times to avoid load-balancing problems.

Each of these is considered in turn:

i. It would be convenient to define an independent task as an initial and final relativistic 

configuration pair (RCP). Although the calculation for each RCP is independent of all 

others, a redundancy is introduced since the radial integrals are the same for several 

relativistic configurations associated with a single non-relativistic configuration. It was 

already noted that for complex configurations the radial contributions only constitute a 

small fraction of the computational effort. Therefore, when grouping RCP’s, the low cost 

of repeating the radial calculations is neglected. With this consideration, a task is defined 

as a group of RCP’s.

ii. From experience it is known that for relatively simple RCP’s the communication time is a 

considerable fraction of the computation time for that task. Accordingly, the flexibility to 

group from one to many RCP’s is the right approach to meet this requirement.

iii. It follows that assigning each individual RCP as a task would maximize their number. 

This, however, leads to small tasks that conflict with requirement ii) with poor parallel 

efficiency due to communication costs.
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iv. The issue of load balancing is crucial to obtaining satisfactory parallel performance when 

the communication costs are small.  Even if requirements i) through iii) are satisfied, 

there remains the relative computational costs of each of the tasks. If there are a few tasks 

that are much more expensive than the others, this can lead to many idle processors while 

a few are loaded with the expensive tasks. It is desirable to have tasks where the 

distribution of computational times does not vary greatly.

The parallel performance issues are strongly related to the grouping of the RCP’s into tasks. 

Unfortunately, there is no obvious a priori way for determining an optimal scheme. In the 

following sections different groupings and the resulting parallel efficiencies are described.

2.1 Grouping by Non-Relativistic Configurations

The input to the TOPAZ code consists of list of initial non-relativistic configurations 

(NRC’s). This permits the possibility of using LS coupling for light elements. [2] For heavier 

elements requiring jj coupling, each NRC is expanded into all possible relativistic configurations. 

[2] It is natural to consider defining a single task by grouping all RCP’s associated with a single 

NRC. Conveniently this also avoids the redundancy with the radial calculations.

Results for TOPAZ calculations with 808 initial non-relativistic configurations using the 

NRC grouping with varying number of total processors are presented in Fig. 1. The figure shows 

very poor scaling with essentially constant speedup beyond 32 processors. The reason becomes 

evident by examining the time required for each task. These times are displayed in Fig. 2 and 

shows a wide variation in the times required for each task, with the most expensive as much as 

three orders of magnitude larger than the least expensive. A single expensive task could therefore 

occupy a processor for the entire duration of the run and the addition of more processors cannot 

reduce the time required to complete the run. In this case, the poor parallel performance is 

entirely due to poor load balancing.

2.2 Distributed Grouping for NRC

An obvious solution to better load balancing is to reduce the time for the most expensive tasks by 

distributing the work among several processors. It is possible to break up the NRC tasks into 

smaller groups of RCP’s. At the same time, it is not efficient to break up inexpensive NRC tasks 

since that would entail unnecessary communication overhead. Thus, one needs the capability to 

distribute the expensive NRC tasks on several processors while keeping the less expensive ones 

on a single processor.
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Fig. 1 Speedup as a function of processors for NRC grouping.

Fig. 2 Task computational times for NRC grouping in Fig. 1.
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This can be implemented by a two-level parallel scheme where the manager processor 

communicates the information associated with an expensive task to a sub-manager processor 

which then farms out the individual RCP’s to worker processors. Inexpensive NRC tasks on the 

other hand, are sent directly from the manager processor to a single worker processor. This two-

level approach shall be denoted as “distributed non-relativistic configurations” (DNRC) and is 

illustrated schematically in Fig. 3.

Fig. 3 Schematic illustration of DNRC grouping of RCP’s where the worker 
processors are denoted as S1, S2, and so on.

In order to implement the DNRC method it is necessary to distinguish between an expensive 

and an inexpensive NRC task. It is possible to show that there is a strong correlation between the 
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an initial non-relativistic configuration. It is straightforward and computationally fast to obtain 

this information from the list of initial non-relativistic configurations before performing the 

actual calculations. The input list can then be approximately ordered starting with the most 

expensive to the least expensive along with the added information concerning RPC’s. Every task 

is then sent from the manager to a sub-manager or a worker processor as appropriate.

Two variations of the DNRC are implemented for the example with 808 NRC tasks in Fig. 1. 
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second approach, DNRC-8, fixes the number of processors at 8 for the most expensive 142 

NRC’s and 1 for the remaining 666. 

The two-level parallel approach has the additional complication that a given task may require 

more processors than are available at the time. In this case the procedure dispatches the most 

expensive task that requires the available processors. With carefully constructed data structures, 

this decision can be made in constant time regardless of the total number of processors or tasks, 

and the overhead on the manager processor is minimal.

It is instructive to plot in Fig 4 the distribution of task times for the two approaches.  Clearly, 

DNRC-V has greatly reduced the time for the most expensive task over DNRC-8; hence, it is 

reasonable to expect improved load balancing for DNRC-V. In Fig. 5 is plotted the speedup for 

the various task methods and shows that both DNRC schemes improve on the NRC approach 

with DNRC-V the most parallel efficient.

The speedup behaviors are interesting in that DNRC-8 is better for small number of 

processors while DNRC-V scales better with a larger number of processors. This is readily 

explained by considering the load balancing within a sub-manager. For a single task, using a 

smaller number of processors as in DNRC-8 as compared to DNRC-V, gives better parallel 

speedup for a sub-manager. For a smaller total number of processors, the overall load balance is 

comparable with DNRC-8 and DNRC-V; hence, the overall parallel speedup is better with 

DNRC-8. This advantage, however, is lost when using a larger number of processors because the 

overall load balancing is much better with DNRC-V, which overwhelms the effect of the better 

efficiency of DNRC-8 within the sub-manager.

As expected, having several processors working on expensive tasks leads to dramatic gains in 

efficiency and scalability over the NRC approach. Although possible, it is not in general easy to 

pick an optimal assignment of processors to each NRC task beforehand and this can significantly 

affect the parallel efficiency. An approach that provides high efficiency without having such 

detailed information in advance is discussed in the next section.

2.3 Grouping by relativistic configurations

In the approaches adopted above, the basic task consisted of all relativistic pairs belonging to 

a single initial non-relativistic configuration. The next approach emphasizes the initial relativistic 

configuration or RC. All pairs with the same initial relativistic configuration are grouped 

together and assigned as a single task to a processor. This scheme returns to single level 
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parallelism, one manager plus workers, and avoids optimization problems assigning processors 

to the NRC’s. Displayed in Fig 4 are the distributions of computing times for tasks grouped by 

RC. While there is again load imbalance, there are now many more tasks and this leads to the 

parallel performance shown Figs 5 and 6.

The RC approach performs well with relatively few processors (relative to the number of 

tasks); however, when there are a large number of processors, DNRC-V performs best. This is 

because even modest load balancing effects become critical with a large number of processors, 

and an approach (such as DNRC-V) which is globally load balanced does well even though the 

same method performs poorly with few processors. Since real TOPAZ calculations almost 

always involve many more tasks than processors, the RC scheme is the default approach.

The RC grouping has additional advantages. Firstly, it results in a cleaner and simpler 

implementation. This reduces the number of potential errors and future modifications or 

refinements can be more easily incorporated. Secondly, it is possible to save part of the 

calculations of the first initial-final relativistic configuration for all remaining pairs within the 

RC group. Examples are the eigenvalues and eigenvectors for the initial relativistic 

configuration. Also since all the final relativistic configurations are related, it is in principle 

although not yet implemented, possible to save part of the final relativistic calculation.

Fig. 4 Distribution of task times for all 4 grouping scheme approaches as a 
function of task numbers.
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Fig. 5 Speedup as a function of processors for all grouping schemes with 
relatively few processors.

Fig. 6 Speedup as a function of processors for all grouping schemes with a larger 
number of processors.
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3. CONCLUSIONS

The parallel efficiency of the TOPAZ code is entirely determined by the disparities in 

computation times of the individual tasks. When a single processor is assigned to a task 

composed of an initial non-relativistic configuration (NRC), the parallel scaling is very poor. 

Two methods have been described to improve load balancing between tasks.

In the first, the grouping of relativistic configuration pairs is as before, but several processors 

are assigned to the most expensive groups. The optimal number of processors is not known 

before performing the calculations so two different methods of allocating processors were 

attempted. One is a smoothly varying distribution of processors proportional to the number of 

pairs (DNRC-V) and the other is a fixed number of processors for the most expensive 

configurations and a single processor for each of the remaining configurations (DNRC-8). This 

was found to give a significant improvement over the NRC approach, but it is very sensitive to 

the choice for the number of processors. In the second approach, the grouping of initial-final 

relativistic configuration pairs was changed. The new organization consists of assigning to the 

same processor all pairs with the same initial relativistic configuration.

It turns out that the DNRC-V method performs best when the number of processors is large 

in comparison to the number of initial non-relativistic configurations and the RC method works 

best for a lesser number of processors. It is tempting to combine the two methods to obtain one 

that would perform well for both small and large number of processors. It should also be noted, 

however, that the good performance of the DNRC-V depends on optimizing the number of 

processor. In the example presented here that was approximately accomplished by trial and error, 

but this is obviously not possible in the general case. Also note that there are constraints from the 

radial computations that would increase in significance with reducing total time for each task; 

thus, it would be eventually inefficient to re-compute them as needed.
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